An Investigation on Physical Properties of NiAs2 Crystal: An Ab-initio Study
Abstract views: 86 / PDF downloads: 45
DOI:
https://doi.org/10.5281/zenodo.10430972Keywords:
NiAs2, DFT, Electronic properties, Elastic Properties, Thermodynamic properties.Abstract
The physical properties of NiAs2 compound is examined theoretically in this study. The study is performed by using Abinit computer programme which depends on Density Functional Theory (DFT). The volume optimization is performed in order to obtain theoretical lattice parameters and atomic positions in unit cell of NiAs2. The electronic properties are revealed by obtaining the electronic band structure and Density of States graphs of this compound. The elastic properties are investigated by calculating the elastic stiffness constants. Finally, the thermodynamic properties of NiAs2 compound are investigated. All calculations of this study are performed under Generalized Gradient Approximation (GGA).
References
R. Castroviejo, Pararammelsbergite (prm). In: A Practical Guide to Ore Microscopy—Volume 1. Springer, Cham. 2023
S. M. Chernonozhkin, J. Mercadier, L. Reisberg, B. Luais, C. Zimmermann, C. Morlot, L. Salsi, A. Lecomte, O. Rouer, M. Brouand, A. Doney, P. Ledru, Geochimica et Cosmochimica Acta 280 (2020) 85-101.
M. Singleton, P. Nash, Journal of Phase Equilibria 8 (1987) 419–422.
E. H. El Ghadraoui, J. Y. Pivan, R. Guérin, M. Sergent, Materials Research Bulletin 23 (1988) 6-10.
Q. L. Wei, H. Y. Yang, Y. Y. Wu, Y. B. Liu, Y. H. Nanomaterials 10 (2020) 204.
P. C. Donohue, T. A. Bither, H. S. Young, Inorg. Chem. 7 (1968) 998-1001.
T. H. Ho, H. C. Dong, V. Q. Bui, Y. Kawazoe, H. M. Le, Phys. Chem. Chem. Phys. 22 (2020) 18149-18154.
S. Qian, X. Sheng, X. Xu, T. Wu, N. Lu, Z, Qin, J. Wang, C. Zhang, E. Feng, W. Huang, Y. Zhou, J. Mater. Chem. C 7 (2019) 3569-3575.
W. N. Stassen, R. D. Heyding, Canadian Journal of Chemistry 46 (1968) 2059-2063.
A. Kjekshus, T. Rakke, A. F. Andresen, Acta Chem.Scand. A 28 (1974) 9.
F. Bachhuber, J. Rothballer, T. Söhnel, R. Weihrich, Journal of Chemical Physics 139 (2013) 214705.
X. Gonze, J. M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G. M. Rignanese, L. Sindie, M. Verstrate, G. Zerah, F.Jollet, M. Torrent, A. Roy, M. Mikami, P. Ghosez, J. Y. Raty, and D. C. Allan, Computational Materials Science, 25 (2002) 478-492.
M. Fuchs, M. Scheffler, Computer Physics Communications, 119 (1999) 67-98.
N. Troullier, J. L. Martins, Physical Review B 43 (1991) 1993-2006.
W. Khon, L. J. Sham, Physical Review, 140 (1965) A1133-A1138.
M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, J. D. Joannopoulos, Reviews of Modern Physics, 64 (1992) 1045-1098.
J. P. Perdew, K. Burke, M. Ernzerhof, Physical ReviewLetters, 77 (1996) 3865-3868.
J. H. Monkhorst, J. D. Pack, Physical Review B 13 (1976) 5188-5192.
A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K. A. Persson, Apl. Materials. 1 (2013) 011002(1-11).
J. F. Nye, Physicalproperties of crystals: theirrepresentationbytensorsandmatrices, Oxford UniversityPress, United States, Chapter 8
C. Lee and X. Gonze, Phys. Rev. B 51 (1995) 8610.
A. A. Maradudin E. M. Montroll, G. H. Weissand I. P. Ivatova, Solid StatePhysics, 2nd ed.,editedby H. E. Ehrenreich, F. Seitzand D. Turnbull. (Academic, New York, 1971), Chap 4.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 International Journal of Medicine and Occupational Health and Safety Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.