Revealing Structural, Electronic and Elastic Properties of NaPaO3 compound theoretically
Abstract views: 81 / PDF downloads: 45
DOI:
https://doi.org/10.5281/zenodo.12598795Keywords:
Elastik Özellikler, Elektronik Özellikler, NaPaO3, Yoğunluk Fonksiyonel TeorisiAbstract
In this study, structural, electronic and elastic properties of NaPaO3 are investigated by Density Functional Theory (DFT). The lattice parameter, ground state energy and energy-volume-pressure relations are revealed by volume optimization. The electronic band diagram and total and partial Density of States (DOS) of NaPaO3 compound are computed and graphs are plotted. It is revealed that NaPaO3 is a semiconductor. Finally, the elastic properties are calculated and interpreted. It is seen that NaPaO3 is an elastic material and it is mechanically stable.
References
Li, L., Liu, X., He C Wang, S., Ji, C., Zhang, X., Sun, Z., Zhao, S., Hong, M., Luo, J., J. Am. Chem. Soc. (2020), 142(3), 1159.
Osada, M., Wang, B. Y., Goodge, B. H., Harvey, S. P., Lee, K., Li, D., Kourkoutis, L. F., Hwang, H. Y., Adv. Mater. (2021), 33, 2104083.
Ünlü, F., Deo, M., Mathur, S., Kirchartz, T., Kulkarni, A., J. Phys. D: Appl. Phys. (2022), 55, 113002.
Nalbandyan, V.B., Avdeev, M., Pospelov, A.A., Solid State Sci. (2006), 8(12), 1430.
Saeed, M., Akbar, A., Haq, I.U., Muhammed, S., Chaudhry, A.R., Rehman, A., Ali, Z., Siddeeg, S.M., Khan, I., Materials Science in Semiconductor Processing, (2022), 139, 106364.
Sayed, A.M., Journal of Physics and Chemistry of Solid, (2021), 148, 109767.
Wang, J., Peng, Z., Wang, J., Wu, D., Yang, Z., Chao, X., Scripta Materialia, (2022), 221, 114976.
Yang, W., Zeng, H., Yan, F., Qian, J., Zhu, K., Zhao, K., Li, G., Zhai, J., Ceramics International, (2022), 48(24), 37476-37482.
Yadav, J.M.K., Sanyal, B., Alloys J., Compd., (2015), 622, 388.
Gulebaglan, S.E., Dogan, E.K., Mater. Res. Express., (2022), 7, 015913.
Asdi, Y., Nourbakhsh, Z., Computational Condensed Matter, (2019), 16, e00372.
Kilit Dogan, E., Aycibin, M., Erden Gulebaglan, S., Secuk, M.N., Erdinc, B., Akkus, H., Journal of the Korean Physical Society, (2013), 63, 2133.
Dogan, E.K., Gulebaglan, S.E., Chinese Journal of Chemical Physics, (2021), 34(2), 173.
Bessimou, M., Masrour, R., Opt Quant Electron, (2024), 56, 317.
Moussa, R., Abdiche, A., Khenata, R., Soyalp, F., Optical Materials, (2021), 113, 110850.
Gonze, X., et al., Comput. Phys. Commun., (2009), 180, 2582.
Perdew, J.P., Burke, K., Ernzerhof, M., Phys. Rev. Lett., (1996), 77, 3865.
Hua, X., Chen, X., Goddard, W.A., Phys. Rev. B., (1997), 55, 16103.
Monhorst, H.J., Pack, J.D., Phys. Rev. B., (1976), 13, 5188.
Kohn, W., Sham, L.J., Physical Review, (1965), 140, A1133.
Momma, K., Izumi, F., J. Appl. Crystallogr. (2011), 44, 1272.
Mouhat, F., Coudert, F.X., Phys. Rev. B., (2014), 90, 224104.
Gulebaglan, S.E., Dogan, E. K., Materials Today Communications, (2022), 32, 104082.
Dogan, E. K., Gulebaglan, S.E., Materials Science in Semiconductor Processing, (2022), 138, 106302.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Medicine and Occupational Health and Safety Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.